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Abstract. In this paper we derive the probability distribution of trial points in the
differential evolution (de) algorithm, in particular the probability distribution of points gen-
erated by mutation. We propose a point generation scheme that uses an approximation to
this distribution. The scheme can dispense with the differential vector used in the mutation
of de. We propose a de algorithm that replaces the differential based mutation scheme with
a probability distribution based point generation scheme. We also propose a de algorithm
that uses a probabilistic combination of the point generation by the probability distribution
and the point generation by mutation. A numerical study is carried out using a set of 50 test
problems, many of which are inspired by practical applications. Numerical results suggest
that the new algorithms are superior to the original version both in terms of the number
of function evaluations and cpu times.
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1. Introduction

The global optimization problem in this paper follows the form:

minimize f (x) subject to x ∈�⊂Rn, (1)

where f (x): � �→ R is a continuous real-valued function. The domain � is
defined by specifying upper (uj ) and lower (lj ) limits of each dimension j .
Therefore, for any x = (x1, x2, . . . , xn)∈�, xj is bounded, i.e. lj �xj �uj .
We denote the global optimal solution x∗, with its corresponding global
optimal function value f (x∗) or f ∗ for a short hand notation.

The differential evolution (de) algorithm [1] is a population set based
algorithm [2] and is purely heuristic. All population set based algorithms
use a population set S. The initial set

S ={x1, x2, . . . , xN } (2)
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consists of N uniform random points in �. A contraction process is then
used to drive these points to the vicinity of the global minimizer. The con-
traction process involves replacing bad point(s) in S with better point(s),
per iteration. de attempts to replace all points in S by new points at each
iteration. It progresses in an epoch or era base. During each epoch, N new
function values are evaluated on N trial points. Trial points are generated
using mutation and crossover.

In this paper, we identify a drawback of the mutant point (the point gen-
erated by the mutation of de) using the probability density of the mutant
point. We demonstrate that the truncated probability density function of
the mutant point can be closely approximated by the beta distribution. We
then suggest two variants of the de algorithm. The first variant consists in
replacing the ‘differential’ based mutation scheme with the beta distribu-
tion based point generation scheme. The second variant generates the trial
points (by probabilistically) combining the mutation scheme with beta dis-
tribution.

This paper is divided into seven sections. In the next section, a brief
description of de is given. Section 3 derives the probability density function
(pdf) of the point generation. In Section 4, the motivation for trial point
generation using the beta distribution is presented. In Section 5, the new
algorithms are presented. Section 6 presents numerical results and finally,
Section 7 contains the concluding remarks.

2. A Brief Description of de

The de algorithm attempts to replace each point in S with a new better
point. Therefore, in each iteration, N competitions are held to determine
the members of S for the next iteration. The ith (i = 1,2, . . . ,N ) com-
petition is held to replace xi in S. Considering xi as the target point, a
trial point yi is found from two points (parents), the point xi , i.e., the tar-
get point, and the primary trial point x̂i (hereafter trial point) determined
by the mutation operation. In its mutation phase, de randomly selects
three distinct points xp(1), xp(2) and xp(3) from the current set S. None of
these points should coincide with the current target point xi . The weighted
difference of any two points is then added to the third point which can be
mathematically described as :

x̂i =xp(1) +F(xp(2) −xp(3)), (3)

where F >0 is a scaling factor, and xp(1) is known as the base vector. If the
point x̂i /∈� then the mutation operation is repeated. We denote the point
generation using mutation by Mµ. The secondary trial point yi is found
from its parents xi and x̂i using the following crossover rule:
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i if Rj �CR or j = Ii

x
j

i if Rj >CR and j �= Ii,
(4)

where Ii is an integer randomly chosen with replacement from the set I ,
i.e., Ii ∈ I ={1,2, . . . , n}; the superscript j represents the j th component of
respective vectors; Rj ∈ (0,1), drawn uniformly for each j (j =1,2, . . . , n).
The ultimate aim of the crossover rule (4) is to obtain the secondary trial
vector yi with components coming from the components of the target vec-
tor xi and mutated vector x̂i . This is ensured by introducing the param-
eter CR and the set I . The targeting process continues until all members
of S are considered. After all N secondary trial points yi have been gen-
erated, acceptance is applied. In the acceptance phase, the function value
at the secondary trial point, f (yi), is compared to f (xi), the value at the
target point. If f (yi)<f (xi) then yi replaces xi in S, otherwise, S retains
the original xi . Reproduction (mutation and crossover) and acceptance con-
tinue until some stopping conditions are met.

It can be seen from (3) that mutation (Mµ) is the main point generation
mechanism of de. This operation calculates the coordinates of new points.
The crossover operation (4) chooses the coordinates of a (secondary) trial
point from the known coordinates of two points using a distribution con-
trolled by CR.

An important issue that needs to be addressed is the value of the scal-
ing factor F in (3). To the best of our knowledge, no optimal choice of the
scaling factor F has been suggested in the literature of de. For instance,
in [3] F is a value in [0.4,0.8], in [4] a parameter-dependent anisotropic
value, and in [5] dynamically calculated values are suggested. All of these
are derived empirically, and in most cases choice of F varies from 0.4 to
1. However, in original de [1] F was chosen to lie in (0,2]. It appears that
there has not been a coherent and systematic study using a large set of
problems in seeking the optimal choice of F and the suggested values of
the scaling factor have been largely dependent on small test problem sets
used. We carried out numerical experiments with de using 50 test problems.
Our numerical experiments found that Mµ often generates trial points out-
side the feasible region � and the number of points that fall outside � var-
ies from problem to problem. However, we observed that the larger the F ,
the higher the number of such points are. On the other hand, the smaller
the F , the higher the probability of de getting trapped in a local minimizer.
The choice of F is therefore a delicate issue. We attempt to remedy this
by generating trial points from a probability density. We derive the pdf of
mutated points given by (3) and approximate the truncated pdf of the trial
points with that of the a beta random variable (RV). We then generate trial
points using a beta distribution.
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We denote the pdf of a RV, say X by fX and the joint pdf for RVs, say
X and Y by fXY .

3. Probability Density of Trial Points

In this section, we derive the pdf of mutated points generated by Mµ. We
also look at the effect of F in this pdf. We then approximate a truncation
of this pdf.

To see the effect of F in the pdf, it is enough to derive the pdf of a
single coordinate of x̂i in (3). Let the j th coordinate be our coordinate of
interest, j =1,2, . . . , n. Our derivation of the pdf is based on the uniform
distribution of points. Initially, points in S are generated uniformly from
� and therefore points in all coordinate directions are independently uni-
form. However, as the contraction process continues, points in S will not
be uniform over �. We consider three stages of the contraction process of
S in de: the initial stage, the intermediate stage and the final stage. The ini-
tial stage is when S is uniform or near uniform in �. This may hold for
only the initial few iterations of de. At this stage, the j th coordinate of
points in S distributed uniformly in [lj , uj ], j = 1,2, . . . , n. The intermedi-
ate stage is the stage when points in S will be non-uniform in � in that
points will be distributed lower in the valley of the regions of attraction of
different local minimizers. At the final stage the points in S will be distrib-
uted within the region of attraction of the global minimizer. If the function
f is well behaved in that it can be approximated well by a quadratic near
a minimizer, then the regions of attraction of the minimizer will likely be
of an elliptical or spherical shape. Under this assumption, it is reasonable
to assume that the points in a particular region of attraction are locally
uniform within the region. At the final stage, the j th coordinate of points
in S are distributed uniformly in [xj

l , x
j
u ], where x

j

l (� lj ) and x
j
u (� uj )

are defined by x
j

l = min{xj

i } and x
j
u = max{xj

i } for all xi in S. Points in
S are unlikely to be uniform in � at the intermediate stage. However, we
assume that subsets of points in S are locally uniform within their respec-
tive regions of attraction.

Under the above considerations, we derive the pdf of the j th coordinate
of x̂i . Without loss of generality, let the j th coordinate be defined on [0,1].
Let the random variables be X1 and X2 ∼ U (0,1). We also define Y1 = X1

and Y2 =F(X2 −X1), where F is the scaling factor in (3). By defining y1 =
u1(x1, x2)= x1 and y2 =u2(x1, x2)=F(x2 − x1), and by using the change of
variable technique we can write x1 =v1(y1, y2)=y1 and x2 =v2(y1, y2)=y1 +
1
F
y2. Here, the values xi and yi are respectively the realizations of the RVs

Xi and Yi, i =1,2. The joint pdf fY1Y2 is given by
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fY1Y2(y1, y2)=|J |fX1X2(v1(y1, y2), v2(y1, y2))

=|J |fX1(v1(y1, y2))fX2(v2(y1, y2))= 1
F

, (5)

where J is the determinant of the Jacobian matrix[
�x1
�y1

�x1
�y2

�x2
�y1

�x2
�y2

]
=

[
1 0
1 1

F

]
. (6)

The supports (bounds) of y1 and y2 can be obtained from the sup-
ports of x1 and x2 (see, reference [6]). By using the bounds of x1 and x2,
the bounds of y1 and y2 can be seen to be 0 � y1 � 1 and −F � y2 � F .
The other support in the y1–y2 plane can be found using the relationships
between y1 and y2. These relationships are y1 + 1

F
y2 = 0 and y1 + 1

F
y2 = 1,

for x2 =0 and x2 =1, respectively. The marginal density fY2(y2) can be cal-
culated from the integrals:

fY2(y2)=
∫ 1− 1

F
y2

0

1
F

dy1 = 1
F

(
1− 1

F
y2

)
, 0�y2 �F, (7)

and

fY2(y2)=
∫ 1

− 1
F

y2

1
F

dy1 = 1
F

(
1+ 1

F
y2

)
, −F �y2 �0. (8)

Combining (7) and (8) we write

fY2(y2)= 1
F

(
1− 1

F
|y2|

)
, −F �y2 �F. (9)

We now let Y3 ∼U(0,1) independently of Y2. We consider the joint pdf of
Y3 and Y3 +Y2. We denote Z1 =Y3 and Z2 =Y3 +Y2, where Y2 =F(X2 −X1).
The joint pdf fZ1Z2 is given by

fZ1Z2(z1, z2)= ∣∣J ∣∣fY3Y2(v1(z1, z2), v2(z1, z2))=|J |fY2(y2)fY3(y3)

=fY2(z2 − z1), (10)

since |J |= 1, v1(z1, z2)= y3 = z1 and v2(z1, z2)= y2 = z2 − z1. Therefore, the
joint pdf fZ1Z2 is given by

fZ1Z2(z1, z2)= 1
F

(
1− 1

F
|z2 − z1|

)
, 0� z1 �1,

z1 −F � z2 � z1 +F. (11)
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Clearly, the shape of the joint pdf fZ1Z2(z1, z2) is dependent on F . The
marginal pdf of Z2 will be our desired pdf. To approximately cover the
ranges of F suggested in literature we consider two cases : (i) F > 1 and
(ii) 0.5 � F � 1.

Case (i): The marginal pdf is given by

fZ2 (z2)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
F

∫ z2+F

0

(
1− 1

F
(z1 − z2)

)
dz1, −F � z2 �1−F,

1
F

∫ 1
0

(
1− 1

F
(z1 − z2)

)
dz1, 1−F � z2 �0,

1
F

∫ z2
0

(
1− 1

F
(z2 − z1)

)
dz1 + 1

F

∫ 1
z2

(
1− 1

F
(z1 − z2)

)
dz1, 0� z2 �1,

1
F

∫ 1
0

(
1− 1

F
(z2 − z1)

)
dz1, 1� z2 �F,

1
F

∫ 1
z2−F

(
1− 1

F
(z2 − z1)

)
dz1, F � z2 �1+F.

(12)

Case (ii) : The marginal PDF is given by

fZ2 (z2)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
F

∫ z2+F

0

(
1− 1

F
(z1 − z2)

)
dz1, −F � z2 �0,

1
F

∫ z2

0

(
1− 1

F
(z2 − z1)

)
dz1 + 1

F
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z2

(
1− 1

F
(z1 − z2)

)
dz1 0� z2 �1−F,

1
F

∫ z2

0

(
1− 1

F
(z2 − z1)

)
dz1 + 1

F

∫ 1
z2

(
1− 1

F
(z1 − z2)

)
dz1, 1−F � z2 �F,

1
F

∫ z2

z2−F

(
1− 1

F
(z2 − z1)

)
dz1 + 1

F

∫ 1
z2

(
1− 1

F
(z1 − z2)

)
dz1 F � z2 �1,

1
F

∫ 1
z2−F

(
1− 1

F
(z2 − z1)

)
dz1, 1� z2 �1+F.

(13)

Integrations involved in the above pdfs (12) and (13) can easily be car-
ried out. The pdfs fZ2(z2) given by (12) and (13) are both proper in the
sense that their integrations result in unity for F in the respective ranges.
The continuity of F is also preserved as the pdfs fZ2(z2) in (12) and (13)
are equal for F =1 and this is given by

fZ2(z2)=

⎧⎪⎪⎨
⎪⎪⎩

1
2 + z2 + z2

2
2 , −1� z2 �0,

1
2 + z2 − z2

2, 0� z2 �1,

2−2z2 + z2
2

2 , 1� z2 �2.

(14)

For illustration, we consider five values of F , two from each range
(1,∞) and [0.5,1], and F = 1, and present the pdf for each of these val-
ues of F in Figure 1. It is evident from the figure that even for F = 0.5,
mutated points may fall outside the defined region [0, 1]. For F = 1 inte-
gration of (14) shows that a third of the points fall outside [0, 1]. The phe-
nomenon of points falling outside � is expected in de. In the early stages
scattered points in S result in large differential vectors (xp(2) −xp(3)) in (3)
which cause x̂i to fall outside �. The scaling factor F also has an effect in
it. At the final stage when the points in S form a cluster around the global
minimizer, x̂i will only fall outside � if the global minimizer lies close to
the boundary of �.

Given a suitable value for F , we can draw trial points x̂i from the pdf
(12) or (13) instead of using Mµ in (3). However, trial points may still
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Figure 1. Probability density function.

fall outside �. We face two difficulties with this alternative approach. The
first difficulty is in choosing a value of F that reduces the phenomenon
of points falling outside, but at the same time maintains the exploratory
feature of de. This is the same problem as encountered with Mµ. The sec-
ond difficulty is in generating a point using either of the pdfs. This involves
a nonlinear equation to be solved for each coordinate of the point. For
example, to generate the j th component x̂

j

i of trial point x̂i when F = 1,
one needs to integrate (14) to get x̂

j

i such that

r =
∫ x̂

j

i

0
fz2(z2)dz2, (15)

where r is a uniform random variable in [0,1].
One approach of preventing points from falling outside � would be to

truncate the density. The RV of such a truncated density can be condition-
ally defined as follows

Z′
2 ={

Z2
∣∣Z2 ∈ [0,1]

}
. (16)

The pdf fZ′
2
(z2) of the observed points in [0,1] can be written as
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fZ′
2
(z2)=

{
fZ2 (z2)

Pr(0�Z2 �1)
if z2 ∈ [0,1],

0 otherwise.
(17)

However, one cannot avoid the integration (15) for each coordinate of x̂i

using a truncated pdf. Moreover, as the contraction process continues the
interval on which z2 is defined will continue to shrink. Thus, the trunca-
tion may not even be necessary, unless, of course, the global minimizer lies
close to the boundary of �.

To alleviate the above problems, we propose a β-density as an approxi-
mation to the truncated pdf. This approximation is justified by the shape of
the pdfs in Figure 1. The useful property of the β-distribution is that the
points will no longer fall outside the range [0,1]. However, in order to use
this distribution, its standard deviation has to evolve in a similar way as
the differential vector evolves. The mean of the β-distribution should also
vary in the same way as the base vector varies for each targeted point. The
β-density therefore must have the property of self-adjusting its shape as the
contraction process, per iteration, proceeds. We can therefore iteratively gen-
erate trial points using the evolving β-distribution instead of using Mµ. We
refer to this point generation as β-driven mutation and denote it by Mβ .

4. The Self-Adjusting β-Density

The β-distribution on [0,1] has probability density given by

fZ(z)= �(a +b)

�(a)�(b)
za−1(1− z)b−1, 0� z�1, a, b>0, (18)

with mean a/(a + b) and variance ab/(a + b)2(a + b + 1). The symbol �

represents the gamma function. Clearly, the values of a and b determine
the shape of the density function. Since we are interested in the j th com-
ponent x̂

j

i of a trial point x̂i , we let aj and bj represent the parameters
of the β distribution in the j th coordinate, j = 1,2, . . . , n. We obtain the
values of aj and bj from a given mean and a given standard deviation.
We denote a randomly generated value of this coordinate by x̂j . Since x̂j

must lie between the upper and lower limits, uj and lj , respectively of
the j th coordinate, x̂j = kjzj + lj , where kj = uj − lj and zj is a random
realization from a β(aj , bj ) distribution. We define θj = (xj − lj )/kj and
Aj =

[
(kj )2θj (1− θj )/(sj )

2
]
−1, where xj and sj are the given mean and

standard deviation of the β random variable Zj with realization zj , respec-
tively. We use these to write aj =Ajθj and bj =Aj(1− θj ). An estimate of
the standard deviation sj would be the sample standard deviation of the
j th components of the N points in the current set S. However, we find that
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the following parameter based formula works in practice:

sj = τ × ∣∣xj
max −x

j

min

∣∣, (19)

where τ is an empirically based parameter, and xmax, xmin and their func-
tion values fmax, fmin are such that

f (xmax)=fmax =max
x∈S

f (x) and f (xmin)=fmin =min
x∈S

f (x). (20)

We choose the mean x as the best of the two uniform random points in
S, each time we target to replace xi in S. We also let the β-distribution be
defined on [lj , uj ].

In the early stages, while the spread of points in S is still large, the cal-
culated parameters aj and bj could take on negative values, which are not
permitted, or values between 0 and 1, for which the β-distribution is U -
shaped. We therefore restrict them to values in the range [1,∞), replacing
them by 1 if they fall outside it. Notice that in the limiting case aj =bj =1,
the β-distribution is a uniform distribution. Hence, if our standard devia-
tion is high we will be generating a realization from a uniform distribution.
We use the algorithm of Cheng [7] for generating the β-variates.

5. Differential Free Point Generation in de

In this section, we propose two new versions of de. The first version
replaces Mµ with Mβ . This version of de is referred to as the differential
free de algorithm (fde). The main feature of fde is that trial points are
always generated inside the search region �. The second version generates
trial points using some probability distribution on {Mµ,Mβ}. We refer to
this version of de as the probabilistic differential free de algorithm (pfde).
The main feature of pfde is that it probabilistically adapts a trial points
generation scheme that solves a given problem in a robust manner. Full
details of the new algorithms are given below.

5.1. the differential free de algorithm

The fde differs from de in that it replaces Mµ with Mβ . Like de, fde also
targets all N points in S at each iteration in order to replace them with
better points. When xi, i =1,2, . . . ,N , is targeted, fde randomly selects two
points in S (as opposed to three points in Mµ of de) and uses the best of
the two, say x as the mean of the β-distribution. Notice that unlike de,
fde does not exclude the targeted point xi from being selected. Using x

as the mean and the standard deviation s as defined by (19), fde gener-
ates a trial point, say, x̂i , using the β-distribution. Since the targeted point
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xi is not excluded from being selected it may emerge as the mean of the
β-distribution. If it does then a local exploration is carried out around tar-
geted point xi using the β-distribution, a feature that de lacks. As in the
case of de, fde performs crossover (4) in obtaining the secondary trial point
yi . We now present the algorithm for fde.

ALGORITHM 1. The fde Algorithm

Step 1. Determine the initial set S

S ={x1, x2, . . . , xN } ,

where the points xi, i =1,2, . . . ,N, are sampled randomly in �;
evaluate f (x) at each xi . Take N 
n, n being the dimension of
the function f (x). Set iteration counter k =0.

Step 2. Determine the best and the worst point in S. Determine the points
xmax and xmin. If the stopping condition is satisfied, then stop.

Step 3. Generate points to replace points in S. For each xi ∈ S (i =
1,2, . . . ,N ), determine the secondary trial point yi by the follow-
ing two operations:

• Mutation using Mβ : Randomly select two points from S

(which may include xi , the targeted point) and find the
best point, say x of the two. Obtain x̂

j

i using β-distribution
with mean xj and standard deviation τ × ∣∣xj

max − x
j

min

∣∣, j =
1,2, . . . , n. Calculate each component x̂

j

i of x̂i .
• Crossover : Calculate the secondary trial vector yi corre-

sponding to the target xi from xi and x̂i using the crossover
rule (4).

Step 4. Replace points in S. Select each trial vector yi for the (k + 1)th
iteration using the acceptance criterion : replace xi ∈S with yi if
f (yi)<f (xi) otherwise retain xi . Set k :=k +1 and go to Step 2.

5.2. the probabilistic differential free de algorithm

The pfde algorithm generates trial points x̂i using some probability distri-
bution over the set {Mµ,Mβ}. That is, trial points are either generated using
Mµ or Mβ at each iteration. Initially equal probabilities (0.5) are assigned
to both scheme Mµ and Mβ and these probabilities are updated according
to some rules based on reward (for being successful) and penalty (for being
unsuccessful). This probabilistic adaptation in the algorithm guides pfde
in deciding on which mutation scheme to use most in generating points
for any given problem. This allows the algorithm to bias the the rule that
solves a given problem in a most efficient and robust manner.
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Our motivation for this modification is purely based on numerical
experiments with de and fde using 50 test problems. We observed that fde,
that uses only Mβ , performed well in terms of the number of function
evaluations for most of the problems, while for few others it performed
poorly. The same was true for de which uses Mµ. de was superior to
fde in terms of locating the global minimum value but much inferior in
terms of the number of function evaluations. This motivated us to intro-
duce a scheme that combines Mµ and Mβ probabilistically. This probabilis-
tic scheme penalizes (rewards) a mutation scheme for not making (making)
good progress. We combine the scheme Mµ with Mβ so that mutated points
are either generated with some probability αk using Mµ or with probability
γk =1−αk using Mβ . A scheme is selected with some probability (e.g. Mµ is
first selected with probability 0.5) to create mutated points, and this prob-
ability is updated after each iteration. If x̂i are generated, say using Mµ,
and a higher number of these points are found to be producing much bet-
ter secondary trial points compared to the current N points in S then the
probability for using the scheme Mµ is increased (reward). We use the fol-
lowing scheme for increasing the probability for Mµ:

αk =αk−1 + 1
2αk−1(1−αk−1), (21)

and γk is obtained using γk =1−αk. If, however, the secondary trial points
are not better in comparison to the current N points in S then the proba-
bility of Mµ is decreased (penalty) using

αk =αk−1 − 1
2αk−1(1−αk−1). (22)

The motivation for the use formulae (21) and (22) in probabilistic adap-
tation can be found in [8] where they have been used in the context of com-
binatorial optimization using learning automata. The value 1

2 used in (21)
and (22) controls the increment on αk in (21) and the reduction on αk in
(22). Other values can also be used but our numerical studies have sug-
gested that it is a good value to choose.

To determine whether to reward or to penalize a mutation scheme we
use the following empirical scheme. We count the number of replacements
(nr) in S in an iteration. If nr is greater than or equal to the nearest inte-
ger to 0.6N then we reward the mutation scheme used. If it is less than or
equal to 0.3N than we penalize the scheme. If, however, nr falls between
0.3N and 0.6N then we neither reward or penalize the scheme. This adap-
tive process tends to let the algorithm decide for itself which scheme to use
most in generating trial points for any given problem so that it solves the
problem in a much more efficient way. This is done by increasing the value
of αk whenever Mµ gives more favourable points, thus reducing the proba-
bility of using Mβ . On the other hand, if Mβ produces a high nr then αk
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is reduced. We force αk, k �1, to lie in [0.05, 0.95]. For example, if αk goes
below 0.05, we set αk =0.05 by clipping. This is done in order to avoid the
algorithm switching entirely to one scheme. Thus αk and γk lie in (0,1) to
allow the algorithm to be able to switch from one scheme to the other. The
algorithm for pfde is described below.

ALGORITHM 2. The pfde Algorithm

Step 1. Determine the initial set S. Same as in Algorithm 1. Set αk =0.5.
Step 2. Determine the best and the worst point in S; check the stopping

condition. Same as in Algorithm 1.
Step 3. Generate points to replace points in S. If ω�αk, where ω is a ran-

dom number in [0, 1], then go to Step 3a else go to Step 3b.

Step 3a. Mutation rule Mµ: For each xi ∈ S(i = 1,2, . . . ,N)

determine x̂i using (3). Go to Step 3c.
Step 3b. Mutation using Mβ : Randomly select two points from S

(which may include xi , the targeted point) and find the
best point, say x of the two. Obtain x̂

j

i using β-distribu-
tion with mean xj and standard deviation τ × ∣∣xj

max −
x

j

min

∣∣. Calculate each component x̂
j

i of x̂i . Go to Step
3c.

Step 3c. Crossover: Calculate the secondary trial vector yi cor-
responding to the target xi from xi and x̂i using the
crossover rule (4).

Step 4. Replace points in S. Set nr =0. Select each trial vector yi for the
(k+1)th iteration using the acceptance criterion : If f (yi)<f (xi)

then set nr = nr+1 and replace xi ∈S with yi otherwise retain xi .
If this Step is reached from Step 3a then go to Step 4a else go to
Step 4b.

Step 4a. If nr � 0.6N then αk = αk−1 + 1
2αk−1(1 − αk−1). If nr �

0.3N then αk =αk−1 − 1
2αk−1(1−αk−1). Set k=k+1 and

go to Step 2.
Step 4b. If nr � 0.6N then αk = αk−1 − 1

2αk−1(1 − αk−1). If nr �
0.3N then αk =αk−1 + 1

2αk−1(1−αk−1). Set k=k+1 and
go to Step 2.

REMARKS

1. It can be seen from Algorithm 2 above that when αk =0 then we have
the fde algorithm and when αk =1 then we have the de algorithm.
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6. Numerical Results

In this section we judge the performance of the new algorithms using a
collection of 50 test problems. These problems range from 2 to 20 in dimen-
sion and have a variety of inherent difficulty. All the problems have con-
tinuous variables. A detailed description of each test problem (P ) in the
collection can be found in [9]. We compare the results obtained by the
new algorithms with those of the de algorithm. The algorithms were run
100 times on each of the 50 test problems to determine the success rate
(sr) (or percentages of success) of each algorithm. There were 5000 runs in
total. We calculated the average number of function evaluations (fe) and
cpu times (cpu) for those runs for which the global minima were found. We
used sr, fe and cpu as the criteria for comparison. A solution to the prob-
lem need not be the global minimum f ∗ exactly, but may be any value less
than f ∗

ε ,

f ∗
ε =f ∗ + ε, (23)

where ε = 9 × 10−4. Therefore, a run was terminated when either the best
function value in S was identical to the optimal solution to at least three
decimal digits, or the maximum number of iteration (T ) was reached. We
also counted a run if it failed to satisfy (23) but produced the global min-
imum within either one or two decimal digits of accuracy. We refer such
a run as a near success (ns) run. The number of function evaluations and
cpu times for these runs are not reflected in our comparison.

All the algorithms have some parameter values that are to be provided
by the user. We first discuss the parameters that are common to all algo-
rithms. For example, maximal iteration parameter T and the size N of the
population set S. We took the value of T to be 10,000 and the value of
N to be 10n, where n is the dimension of the problem. These are heuristic
choices. For example, the value of N can always be increased for obtain-
ing the global minimum with higher probability. However, the higher the
value of N , the higher the number of fe is. Other parameters of de are the
scaling parameter F in its mutation scheme (3) and controlling parameter
CR in its crossover scheme (4). The effect of CR has been studied in [2,10]
and it was found that CR = 0.5 is a good choice. We have also conducted
a series of runs of de using values (F varying from 0.3 to 1.25; CR from
0.25 to 0.9) for each of these parameters. The best results obtained using
the 50 problems were for F = 0.75 and CR = 0.5. The parameter values for
all algorithms were found empirically using the 50 test problems. We do not
claim these values to be the optimal for any given problem in general but
they are good values to choose.
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A parameter associated with fde is τ in (19). Our numerical studies
found that the results of fde were sensitive to τ . We therefore present the
results of fde for several values of the parameter τ .

To see the effect of τ in fde we present the results of fde with varying
τ in Table I. We also present the results of de in the same table to make
a comparison between fde and de. We have excluded the Odd Square func-
tion (OSP) and Storn’s Tchebychev function (ST) from Table I as they were
not solved by either de or fde. In Table I, the first column contains the
problem name [9] with its dimension given in brackets; the column fo rep-
resents the average number of points per successful run that fall outside the
feasible region in de. Trial points do not fall outside � in fde. The last row
in Table I presents the total results. We now look at the effect of τ in fde.
We use τ = 0.25,0.5 and 1 for this. Total results in the last row indicate a
substantial decrease in fe with a decrease in τ . There are a number of prob-
lem for which the sensitivity to τ is higher than others. For example, the
Ackley problem (ACK), the Epistatic Michalewicz (EM), the Neumaier’s
problems (NF2 and NF3), the Salomon problem (SAL), the Shekel fam-
ily (S5, S7 and S10) and the Shekel foxhole (FX) dominate fe. A change
in τ makes a considerable impact in fe for these problems. In terms of fe
τ = 0.25 outperforms the other two. In terms of sr τ = 0.25 also remains
superior. However, when we reduced τ to 0.15 then sr deteriorated. There-
fore, we use τ =0.25 for fde for our next comparisons.

We now compare fde with de using total results in Table I. In terms of
fe fde with τ =0.25 outperforms de by about 15%. However, in terms of sr
de outperforms fde by about 6%. By looking at ns we see that there were
more runs in fde than in de that were unable to produce solutions to three
decimal digits of accuracy, but were able to obtain solutions with either one
or two decimal digits of accuracy. If we compare de with fde for τ = 0.25
by assuming the number of runs in brackets (ns) as successes, we see that
in terms of sr+ns de remains superior to fde by 3% runs. This shows that
fde is less robust than de in obtaining accurate global minima. Both the
algorithms, however, were able to obtain minimum values for 46 problems.
There are however two functions, namely the Rosenbrock function (RB) for
which de succeeded but fde failed, and the Salomon function (SAL) for
which the fde was successful in 21% of the runs but de failed. Both de and
fde failed with the PTM function. If we compare de with fde by excluding
the results of these two functions, we see that the comparison is even more
favourable to fde in terms of fe.

During our numerical experiments, we observed that both algorithms
had their strengths and weaknesses. One of the weaknesses of de is that
the trial points fall outside �. Specially, for functions with global minimum
near to the boundary. For instance, for the function SWF about 56% of all
trial points fell outside. On average, per function, 21% of the trial points
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Table I. Comparison of De and Fde using 48 test problems

fde de
τ =1 τ =0.5 τ =0.25 CR =0.5,F =0.75

P(n) fe sr(ns) fe sr(ns) fe sr(ns) fe sr(ns) fo

ACK(10) 243,556 100 60,048 100 21,556 100 203,684 100 1,789
AP(2) 530 100 372 100 1,490 100 450 100 19
BL(2) 827 100 824 100 607 98(2) 587 100 271
B1(2) 1,004 98 656 96 1,086 75(25) 746 100 22
B2(2) 1,526 100 803 97 727 69(31) 870 100 23
BR(2) 14,059 100 6,540 100 1,911 100 1,002 100 330
CB3(2) 882 100 414 100 247 96(4) 498 100 24
CB6(2) 1,714 100 614 100 714 100 656 100 20
CM(2) 358 100 247 100 622 100 338 100 21
DA(2) 15,787 98(2) 4,402 100 5,221 100 1,427 100 201
EP(2) 974 100 598 100 532 98(2) 668 100 67
EM(10) 901,232 5(41) 860,714 19(38) 530,190 26(45) 538,619 84(10) 333,565
EXP(10) 11,626 100 4,386 100 2,878 100 9,478 100 1,254
GP(2) 2,173 100 772 100 612 94 714 100 41
GW(10) 311,854 100 73,450 100 24,066 98(2) 251,408 100 1,334
GRP(3) 4,376 100 2,028 100 1,475 100 1,408 100 407
H3(3) 1,274 100 655 100 439 100 712 100 208
H6(6) 298,894 62(38) 91,141 100 25,060 100 6,644 100 3,220
HV(3) 70,881 100 14,152 100 5,327 90(5) 3,372 100 95
HSK(2) 338 100 254 100 544 100 295 100 37
KL(4) 132 100 133 100 116 100 565 100 88
LM1(3) 1,414 100 802 100 627 100 1162 100 102
LM2(10) 17,598 100 6,500 100 4,188 100 14,164 100 1,887
MC(2) 1,010 100 542 100 605 100 490 100 71
MR(3) 318 100 267 100 234 100 292 100 83
MCP(4) 794 100 563 100 463 100 455 100 264
ML(10) 246,180 96(4) 130,351 93(7) 29,673 80(20) 21,630 100 13,711
MRP(2) 13,716 94(6) 5,415 82(18) 1,284 80(20) 1,256 40(20) 22
MGP(2) 4,781 94(6) 1,357 76 163 64 939 80 25
NF2(4) 277,458 26(74) 214,858 69(31) 127,486 98(2) 106,205 96(4) 27,616
NF3(10) 0 (9) 632,900 25(75) 225,792 100 116,898 100 5,815
PP(10) 24,872 100 8,680 100 5,274 100 18,562 100 7,194
PRD(2) 7,829 96 4,359 87(3) 2,276 86 1,691 98(2) 523
PQ(4) 16,690 100 4,316 100 3,244 100 4,112 100 400
PTM(9) 0 0(2) 0 0(5) 0 0(58) 0 0(91) 0
RG(10) 192,804 100 63,446 100 21,138 100 152,222 100 5,635
RB(10) 0 0(4) 0 0(8) 0 0(14) 243,028 100 2,813
SAL(5) 390,239 7(93) 317,483 14(86) 303,414 21(79) 0 0(100) 0
SF1(2) 19,225 98(2) 13,447 16(14) 17,883 51(49) 5,009 46 50
SF2(2) 2,735 100 1,598 100 3,422 100 1,932 100 17
SBT(2) 76,548 52(47) 40,684 84(16) 11,834 100 3,574 100 1,041
SWF(10) 53,240 100 27,610 100 15,260 100 43,948 100 52,796
S5(4) 314,880 20(80) 85,513 81(5) 21,992 66(9) 6,140 98 813
S7(4) 288,532 22(78) 42,941 96 4,688 81 5,028 100 510
S10(4) 266,445 48(52) 34,033 95 6,454 93 5,032 100 421
FX(5) 423,900 7(9) 274,350 20 95,625 18 16,560 22 6,217
SIN(20) 583,736 97 51,536 100 21,116 100 120,744 100 45,186
WP(4) 321,560 5(95) 226,198 58(42) 78,298 99(1) 13,822 100 242

Total 53,77,261 3,725 (642) 33,12,952 3,932 (690) 16,27,853 4,081 (368) 19,29,036 4,364 (227) 5,16,490
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Figure 2. Adaptation of pfde on H6.

of de fell outside. Another weakness of de is that it requires a higher num-
ber of fe on average than fde. A strength of de is that it produces a higher
number of successes. A strength of fde is that it can reach the vicinity of
the global minimum quickly, requiring less fe.

We observed that fde reached the vicinity of the global minimum
faster than de, but that after reaching the vicinity of the global min-
imum it found difficulty in satisfying the stopping condition (23). It
spent a considerable number of fe after reaching the vicinity of the
global minimum for problems such as the Shekel family, Epistatic Mich-
alewicz (EM), Hartman 6 (H6) and the Neumaier’s problems (NF2 and
NF3). de also exhibited a similar behaviour for some functions but to
a much lesser extent. We aimed to remedy this behaviour of fde by
the pfde algorithm that can use the complementary strengths of de and
fde. Our next comparison shows that we have achieved this to a great
extent.

We now compare de with pfde in Table II. We ran de and pfde (with
τ =0.25) using a different stopping condition, namely the condition

∣∣fmax −fmin
∣∣<10−4, (24)
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Figure 3. Adaptation of pfde on PP.

where fmax and fmin are defined in (20). The above stopping condition is
often used for the population based global optimization methods [2]. We
studied the effectiveness of (24) in obtaining a solution with a desired accu-
racy, e.g. at least three decimal digits of accuracy. Therefore, a success was
counted if the solution obtained using (24) also satisfied (23). Results of
these studies are presented in Table II, where the last row contains the total
results. We have excluded the Price Transistor modeling function (PTM)
along with OSP and ST from this table as they were not solved by any
of the algorithms presented in Table II. The algorithms with superscript in
Table II use (24) as the stopping condition. They are the same algorithm
but they implement different stopping conditions. For example, pfde uses
(23) as its stopping condition while pfde1 uses (24).

We compare first the results of an algorithm obtained by implementing
the stopping conditions (23) and (24). A comparison between de in Table I
and de1 in Table II shows that de1 incurred higher fe and fo and obtained
a lower sr. In particular, de is superior to de1 by about 20%, 1% and 1%
successful runs in terms of fe, fo and sr, respectively. A similar comparison
between pfde and pfde1 shows that pfde is superior to pfde1 by about 19%,
about 2% and 56 successful runs in terms of fe, fo and sr, respectively. It is
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Figure 4. Adaptation of pfde S5.

therefore clear that the condition (24) worsens fe, fo and sr. A low sr indi-
cates that the imposition of a stopping condition like (24) does not neces-
sarily improve the quality of the final solution.

A comparison between de and pfde (or de1 and pfde1) shows that the
de algorithms are much inferior to the pfde algorithms in terms of fe and
fo. For example, pfde is superior to de by about 44% and about 83% in
terms of fe and fo, respectively. The total cpu required by de1 and pfde1

are 61.53 and 33.91, (excluding the cpu for SAL) respectively. This also
shows that pfde is much superior to de in terms of cpu. Besides pfde was
able to obtain the global minimum value for a difficult problem, namely
the Salomon function (SAL), where de failed. In terms of sr however de
outperforms pfde by 1.2% and de1 outperforms pfde1 by 1.8%.

We now show how the probabilistic adaptation takes place within pfde.
We present four figures to illustrate these adaptations. The figures have
been plotted using the number of iterations k on the horizontal axis and
values of αk on the vertical axis. For a particular problem, we observed
slight variations in plots from run to run. However, the general trend is
the same for all successful runs. Therefore, we present each figure from a
single run. Figures 2–5 refer respectively to the functions Hartman 6 (H6),
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Table II. Comparison of pfde and de using 47 test problems

pfde pfde1 de1

P(n) fe sr fo fe sr fo cpu fe sr fo cpu

ACK(10) 33,197 100 650 28,912 100 536 0.70 206,978 100 1,799 6.72
AP(2) 440 100 9 786 96 8 0.01 871 100 23 0.01
BL(2) 420 100 86 2,966 100 173 0.02 1,694 100 288 0.01
B1(2) 596 91 8 1,046 89 9 0.01 1,241 100 26 0.01
B2(2) 618 92 9 1,184 92 11 0.01 1,367 100 36 0.01
BR(2) 692 100 82 1,132 100 89 0.01 1,612 100 339 0.01
CB3(2) 327 100 8 744 99 10 0.01 915 100 24 0.01
CB6(2) 465 100 9 938 100 8 0.01 1,259 100 23 0.01
CM(2) 233 100 10 625 100 9 0.01 794 100 26 0.01
DA(2) 1,860 100 166 1,433 94 190 0.01 1,880 100 202 0.02
EP(2) 545 100 24 714 76 22 0.01 1,055 64 67 0.01
EM(10) 250,795 68 54,618 240,752 68 53,102 7.00 538,741 96 333,571 14.86
EXP(10) 4,052 100 503 11,764 100 759 0.02 16,366 100 1,352 0.03
GP(2) 546 100 16 912 100 16 0.01 1,207 100 44 0.01
GW(10) 38,223 98 515 51,857 98 599 0.98 264,494 100 1,376 4.77
GRP(3) 1,096 100 163 4,626 100 168 0.27 4,004 100 407 0.24
H3(3) 582 100 89 1,162 100 100 0.01 1,474 100 209 0.01
H6(6) 5,457 100 1,060 8,236 100 1,129 0.10 9,180 100 3,294 0.13
HV(3) 2,932 100 28 4,413 100 30 0.02 4,602 100 95 0.03
HSK(2) 218 100 14 610 100 14 0.01 744 100 37 0.01
KL(4) 123 100 38 2,058 100 314 0.02 2702 100 112 0.02
LM1(3) 716 100 38 1,518 100 46 0.01 1,860 100 102 0.02
LM2(10) 5,484 100 540 8354 100 896 0.07 21,258 100 1,902 0.31
MC(2) 376 100 24 664 100 29 0.01 834 100 74 0.01
MR(3) 210 100 38 2,692 100 129 0.02 3,857 100 134 0.02
MCP(4) 387 100 90 2,356 100 316 0.02 2,654 100 283 0.03
ML(5) 14,686 95 3,870 16,056 95 3,922 0.25 24,883 100 15,283 0.36
MRP(2) 868 69 9 1,457 67 9 0.01 1,883 52 17 0.01
MGP(2) 744 70 8 1,132 69 17 0.01 1,545 74 29 0.01
NF2(4) 58,618 100 4,001 94,437 100 4,167 0.82 149,692 96 29,364 1.17
NF3(10) 89,050 100 824 122,446 98 9,737 1.37 157,534 100 5,877 1.79
PP(10) 6,194 100 1,186 14,242 100 3,290 0.23 25,382 100 7,380 0.49
PRD(2) 1,260 88 241 2,183 88 280 0.01 2,241 94 757 0.01
PQ(4) 2,968 100 187 6,567 100 119 0.06 7,430 100 433 0.07
RG(10) 32,420 100 1,370 30,924 100 112 0.61 156,654 100 5,772 3.15
RB(10) 325,308 100 885 309,522 100 1,220 18.77 304,630 100 2,747 19.18
SAL(5) 27,214 16 68 140,150 11 136 1.33 0 0 0 0.00
SF1(2) 4,578 41 30 5,220 41 29 0.01 5,097 48 56 0.01
SF2(2) 2,178 100 8 2,453 97 9 0.02 2,518 100 18 0.02
SBT(2) 2,252 100 327 2,411 100 367 0.02 3,884 100 1,093 0.03
SWF(10) 17,786 100 5,323 18,048 100 5,607 0.82 50,090 100 53,847 1.66
S5(4) 4,512 89 224 6,362 89 274 0.05 7,431 100 850 0.06
S7(4) 3,844 90 159 5,404 90 158 0.04 6,423 100 438 0.05
S10(4) 3,424 96 121 5,041 96 155 0.06 6,373 100 431 0.06
FX(5) 13,880 13 2,254 15,520 13 2,312 0.20 17,906 9 6,279 0.26
SIN(20) 26,444 100 4,857 27,332 100 4,504 1.12 155,916 100 44,927 5.88
WP(4) 11,973 100 93 22,742 100 96 0.14 18,464 100 248 0.13

Total 10,00,791 4,311 84,880 12,32,103 4,255 86,468 35.24 21,99,619 4,333 5,21,691 61.53
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Figure 5. Adaptation of pfde on SWF.

Paviani (PP), Shekel 5 (S5) and Schwefel (SWF). The pfde algorithm uses
Mµ for αk = 1 and Mβ for αk = 0 and a mixture of the two for any αk ∈
(0,1). For the Hartman 6 problem (Figure 2), pfde tends to use more of
Mβ than Mµ for the first 30 iterations before almost switching completely to
Mµ after about 35 iterations to solve the problem. For the Paviani problem
(Figure 3), pfde quickly switches to Mβ and consistently uses the scheme
to solve this problem. As can be seen from Table II, this problem was very
expensive for de in terms of fe. It needed about 4 times more fe than that
pde needed. This clearly shows the dominance of the scheme Mβ in pfde
in solving this problem. For the Shekel 5 problem (Figure 4), for the first
10 iterations pfde uses both the schemes evenly. After about 15 iterations
pfde switches to Mβ and after about another 10 iterations it uses about an
even mixture of the two schemes before switching to a majority of Mµ. For
the Schwefel function (Figure 5), pfde favours Mβ for the first 100 itera-
tions before switching completely to Mµ and stays there until 230 iterations.
At the end it switches back to Mβ for a few iteration to solve the problem.
The probabilistic adaptation of pfde can be shown using other problems as
well but we have taken the above problems as representative.
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7. Conclusion

We have developed and tested two versions of the de algorithm on a large
set of problems. Numerical results have shown that the new versions are
considerably better than their original counterpart in terms of the number
of function evaluations. The new version pfde has more flexibility than the
original de. In effect, we have generalized the de in that it is special cases of
pfde. We have also shown how the probabilistic adaptation in pfde guides
an algorithm to improve its robustness and efficiency in terms of fe and
cpu times. The new methods are slightly less efficient in terms sr. However,
this is compensated for by the large decrease in number of function eval-
uations and cpu times. The advantage of fde is that trial points no longer
fall outside the search region while the number of points that fall outside
the search region in pfde is much smaller than for de.

The direct search type methods such as the de methods have been
designed to solve optimization problems that are non-differentiable and
noisy, or they have no exactly known mathematical expressions. These
types of problems arise naturally in many practical applications where the
function values are dependent on simulation. These functions are very
expensive to evaluate. Therefore the use of the new algorithms is totally
justified as they require much less function evaluations than the original de.

Further research is underway in developing an efficient hybrid de global
optimization method for large dimensional problems.
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